
Cracking Passwords Like A Boss
Jeff Deifik

jeff@deifik.com

About Me

• MS in Cybersecurity, CISSP, C|CISO

• Software for first e-commerce system (from 1985-1995)

• Software for the first orbiting radio telescope satellite

• Software for the most advanced pulse oximeter

• Cybersecurity for government satellite ground control,
balancing sound cybersecurity with cost and schedule.

• Interest in the intersection of cybersecurity and software
development began with white hat password cracking
over 30 years ago.

Three ways to Crack Passwords

• CPU - john the ripper -
https://github.com/openwall/john

• GPU - hashcat -
https://github.com/hashcat/hashcat

• Rainbow Tables - rcracki_mt -
https://github.com/foreni-packages/rcracki_mt

 only works with non saltged passwords

How Passwords Are Stored

• Plaintext passwords are converted into a cryptographically
strong hash and the hash is stored.

• For example md5sum of Password123 is
a907ac8f85bbece3069a52a39947b287

• Modern hashing adds 'salt' to the plaintext password so that if
two people use Password123 when the salt is added, different
hashes are generated. This makes using rainbow tables or
precomputing hashed passwords impractical. Salt was first
used for passwords in 1979 and was 12 bits long. Modern linux
systems use 128 bits of salt.

Cryptographic Hashing

• There are many ways to hash a password, with
wildly varying speeds. You want a very slow,
resource intensive hash so that performing a brute
force attach is impractical.

• (current microsoft windows) NTLM - 24,934 MH/s

• (most current linux systems) bcrypt - 13,094 H/s

How long does a password need to be?

• It all depends on the hashing method used to store
the password.

• Since bcrypt is 1.9 million times slower than NTLM,
assuming you have 100 passible password
characters, a password would need to be about 3
characters longer using NTLM than bcrypt for
comparable security.

• If you are just using lowercase then the password
would need to be 4.4 characters longer using NTLM
than bcrypt for comparable security.

Password manager and cryptographically strong
passwords

• If you want to be very safe, store all your passwords in a
password manager on your own computer.

• keepass - https://keepass.info/

• https://keepass.info/help/v2/license.html - GPL2

• Make sure you use a different password for every website.

• Since you don't have to memorize the passwords, I
recommend using 20 character long passwords

When you know something about the password
format or length

• If you know the password is 8 characters long and
the first 3 characters are digits, you can do a 'mask'
attack using the mask ?d?d?d?a?a?a?a?a

• This is much faster than a brute force attack.

Brute Force Attach

• If you know the password is 10 characters long and
nothing else the 'mask' is ?a?a?a?a?a?a?a?a?a?a

• This will try all passwords of a given length, but it is
the most inefficient way to crack passwords.

• You will want to use HashCat and a big GPU
– 8 chars upper lower number - 18.340,105,584,896

@229 days on 3060ti

– 12 char upper lower number -
3,226,266,762,397,899,821,056 @12,791,288 years

– 16 char upper lower number -
47,672,401,706,823,533,450,263,330,816 years

Dictionary Attack

• There are many so called dictionaries of known
passwords available. The best one I have found is
RockYou2021. You can quickly test hashes against
password dictionaries. This is the most efficient
way to crack passwords. You can get 10% to 50% of
passwords this way.

Rule Based Attack

• This is what you do after you have done a pure dictionary
attach. There are many different rules included with
JohnTheRinner and Hashcat. You generally apply the rules to
a password dictionary.

• Depending on the hashing method, the size of the
dictionary, and the number of hashes you are trying to
crack, it can take minutes to years to do a rule based attack.

• You will not get all the passwords, but you can get as much
as 90% of them, using good rules and a good dictionary.

Tools
• John The Ripper

– Infrequent official releases, Many unofficial releases

– Poor Graphical Processor Unit (GPU) windows support

– Easy to make custom rules

– Good mailing list support

• HashCat

– 7.0 released Aug 2025

– Great GPU acceleration

– Primitive rule syntax

– Dictionary attacks takes a lot of memory

Wordlists

• Some very high quality

• Most stuffed full of junk and require editing

– Very long lines, often thousands of characters long

– Non ASCII letters

– Separators that are not newlines

– Since they are big, specialized tools are needed

• Rockyou2021 is a bit big, but very high quality

My Custom Password Tools
• short -s 40 foo > foo.40 short -l 41 foo > foo.41

– splits foo into 2 files, 40 chars and shorter, and 41 chars and longer

• msort -l foo > foo.l - Sorts foo by line length

• ascii-lines -p foo > foo.p

– only outputs lines of foo compromised solely of printable ascii characters

• multi-merge foo.1 foo.2 foo.3 > foo.123

– merges any number of sorted files into a big sorted file

• sample -10000 foo > foo.10k

– outputs one line every 10000 lines, for sampling foo

• line_len foo - Prints line length counts

• count foo - Character frequency count

• pw_stats – Shows stasicists on passwords

• pw_unhex – Removes hex encoding from found passwords

Standard Wordlist Tools
• gnu sort

– You generally want to process sorted wordlists

– Works with files bigger than RAM using tmp files

• uniq
– Remove duplicate words

• comm
– Removes duplicate words in different files

• emacs
– The one true editor, regular expressions, can process

gigabyte files

Relative Hashing Speed

• NTLM Speed 41,825.0 MH/s 
• md5 Speed 24,943.1 MH/s
• LM Speed 18,382.7 MH/s
• descrypt Speed 906.7 MH/s
• SHA1 Speed 788.2 MH/s
• scrypt Speed 435.1 kH/s
• WPA2 Speed 396.8 kH/s
• bcrypt Speed 13094 H/s

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270
c40

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

Salt

• 1979 - Unix 12 bits, 4,096 different salts

– https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1
635.pdf

• 1980’s - Unix 48 bits, 281,474,976,710,656

• 1996 - bcrypt 128 bits, 3.4 x 10^38 salts

• Argon2 128 bits, 3.4 x 10^38 salts

• Descrypt uses 12 bits of salt

• LM and NTLN doesn’t use salt 

https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf

Password Statistics on 1061.0m - Length
Length:

 1: 0.0 % (276) 2: 0.0 % (19905) 3: 0.0 % (405k)

 4: 0.2 % (1,830k) 5: 0.7 % (7,602k) 6: 5.5 % (58,667k)

 7: 8.4 % (88,972k) 8: 26.4 % (279,591k) 9: 14.6 % (155,327k)

10: 16.4 % (174,317k) 11: 9.0 % (95,195k) 12: 6.3 % (67,173k)

13: 4.0 % (41,969k) 14: 2.7 % (28,177k) 15: 2.5 % (26,807k)

16: 1.5 % (15,595k) 17: 0.6 % (6,146k) 18: 0.5 % (4,821k)

19: 0.3 % (3,046k) 20: 0.2 % (2,390k) 21: 0.1 % (848k)

22: 0.1 % (695k) 23: 0.0 % (403k) 24: 0.0 % (404k)

25: 0.0 % (224k) 26: 0.0 % (224k) 27: 0.0 % (138k)

28: 0.0 % (2572) 29: 0.0 % (2071) 30+: 0.0 % (11179)

Password Statistics on 1061.0m - Characters
all lower: 16.1 % (170,962k) all upper: 0.6 % (6,854k)

all digit: 7.9 % (83,592k) all special: 0.0 % (60368)

all lower digit: 41.9 % (444,844k) all alpha: 2.5 % (26,758k)

all alpha digit: 14.2 % (151,069k) all lower special: 2.3 % (23,993k)

all upper digit: 3.0 % (31,748k) all digit special: 0.5 % (5584375)

all akoha special: 0.6 % (6,169k)

all lower digit special: 4.7 % (49,710k)

all alpha digit special: 5.0 % (53,131k)

Has control char: 0.1 % (897818)

Has 8 bit asciil: 0.1 % (675318)

Password Statistics on 1061.0m – String Classes

String Classes:

All alpha: 19.3 % (204,575k)

Alphas + Numbers: 35.9 % (380,608k)

Numbers + Alphas: 6.6 % (70,361k)

Alphas + Specials: 0.7 % (7,391k)

Alphas + Numbers + Alphas: 6.7 % (71,374k)

Numbers + Alphas + Numbers: 2.2 % (23,253k)

Alphas + Specials + Alphas: 1.6 % (17,420k)

Password Statistics on 380.6m – <alpha><num>

<alpha> then 1 <numbers> 12.9 % (48,985k)
<alpha> then 2 <numbers> 23.0 % (87,610k)
<alpha> then 3 <numbers> 15.7 % (59,916k)
<alpha> then 4 <numbers> 25.2 % (96,027k)
<alpha> then 5 <numbers> 5.7 % (21,557k)
<alpha> then 6 <numbers> 8.4 % (31,881k)
<alpha> then 7 <numbers> 3.3 % (12,542k)
<alpha> then 8 <numbers> 3.4 % (12,990k)
<alpha> then 9 <numbers> 1.2 % (4,535k)
<alpha> then 10 <numbers> 1.2 % (4,560k)

Control chars in passwords

nul [0]=751 soh [1]=3815 stx [2]=3302 etx [3]=3572

eot [4]=4466 enq [5]=3282 ack [6]=3292 bel [7]=3151

bs [8]=3863 ht [9]=140k lf [10]=8 vt [11]=3406

ff [12]=3973 cr [13]=29,284k so [14]=4017 si [15]=3224

dle [16]=4361 dc1 [17]=4117 dc2 [18]=4404 dc3 [19]=4184

dc4 [20]=3756 nak [21]=4065 syn [22]=4407 etb [23]=4746

can [24]=5130 em [25]=5257 sub [26]=5075 esc [27]=5080

fs [28]=4952 gs [29]=3620 rs [30]=3825 us [31]=4539

del [127]=4428

Defense

• Don’t use NTLM
• 2 factor authentication

– What you have - Titan security key, yubikey, smartcard
– What you are - Fingerprint, Face ID

• Use cryptographically strong random passwords
• Use a password manager

– keepass, 1password, bitwarden

• I wrote a password generator, here is some output:
password is K)dE;pN%(]R~H6L-11!R bits 129
password is GAw->8k?+Qou#(*#L:Z0 bits 129
password is YmytLWazQ[g{0R@}I2ha bits 129
password is _a^W9h8[J~jsO)*6ahaQ bits 129
password is [q;)y_):BTJAfHZU)7.* bits 129

Advanced Cracking Details

Cracking 1,297,509,369 Passwords
• Dump from Have I Been Pwned
• Good news – they are NTLM format
• Bad news – 1,297,000,000
• This requires a Big Data approach and lots of RAM
• Started with 128gb and went to 256gb

• Generally needs server grade hardware for lots of
RAM

• Limited RAM means I could only run a few threads at
the beginning

• I have found 80.7%

Rainbow Tables

• Doesn’t play nice with salt

• Very very fast 

• Works with LM, NTLM, MD5, etc.

• Defcon data duplication village – 6tb drives

– freerainbowtables.com GSM A51 and MD5 hash tables

– more rainbowtables, lanman, mysqlsha1, ntlm, and some word lists

• Best used with a small number of hashes

Starting to Crack - Using Rainbow Crack

• I tried Rainbow Crack 1.8

• Used NTLM loweralpha-space 9 char rainbow table
– 43 gigabytes

• Unable to get it working
– Complex process to convert downloaded tables to rainbow table

– Unable to crack a known hash

– Uses 160kbytes per hash 

– Therefore on 936m passwords, 150,000 gigabytes RAM required 

– Contacted project rainbow crack Sep 26 – no response

Starting to Crack - Using Rainbow Crack

• I tried rcracki_mt (0.7.0) (works with rti2 files)

– It actually works, unlike rainbow crack

• Used NTLM loweralpha-space 9 char rainbow table

– 35 gigabytes

Takes 6 seconds per file (SATA SSD), 84 files (504 sec per hash)

– 900m passwords will take 16,000 years 

– Good for cracking a few passwords, bad for millions

Starting to crack - Using Hashcat

• My hashcat machines has 16gb of ram.

• When I ran hashcat on 1m passwords:

hashcat.exe -m 1000 ..\pwned_pw_pruned_ntlm.rawest.1m
..\dictionaries\rock.dic (3.9mbyte dictionary)

Host memory required for this attack: 667 MB

Therefore on 936m passwords, 624 gigabytes RAM required 

Using Hashcat – Got VRAM ?

• Mask attack i.e. all 8 char (lower, upper, number) passwords

• Between 120 m and 150 m hashes runs out of GPU memory (8gb)

– Bought a Nvidia 5060ti 16gb of VRAM – works with 233m hashes

– 48% faster than the 3060ti cracking NTLM hashes

• 8 char (lower, upper, number) takes 9 days, 19 hours to run

John the Ripper – Got DRAM ?

• Using JTR rules

• Started using JTR / default dictionary & rules

• Using –fork option consumes a lot of ram – typically 30gb per
fork

• Upgraded from 128gb to 256gb

• Running 6 forks currently

• Found 487,193,352 passwords in 12 days

• Lots more work to do

More JTR

• JTR default dictionary and rules
– Found 154m passwords

• JTR incremental attack (which never finishes)
– Total found 325m passwords

• JTR using rockyou2021 wordlist

– Found 156m passwords (already found with
incremental )

• Got total 256gb ram

• JTR –fork=6 default wordlist & rules
– Found 15m more passwords

More JTR

• JTR --fork=7 apply rules twice

– Found 36m more passwords

• JTR –fork=8 apply rules to rockyou2021

– Found 265m passwords in less than an hour 

• JTR --fork=18 rules on rockyou2021

– Now we can use more threads, as only 140m
unfound passwords

– found @11m passwords in 3 days

More JTR
• JTR brute force lower/number up to len=9

– Brute force all lower/number up to 9 len

– found @3.6m passwords in @4 days

• JTR rules using 811m found passwords as
dictionary

– Found 16m passwords in @7 days

– Will take years to finish 

• JTR apply rules twice on 811m found passwords

– Will take years to finish 

More JTR – control characters
• john.exe --fork=10 --format=NT --verbosity=2 --

no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=rep_control_1 \pw-
crack\pwn_ntlm.129m.rawest
– Replace a control char into rockyou2021

• john.exe --fork=22 --format=NT --verbosity=2 --
no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=ins_control_1 \pw-
crack\pwn_ntlm.115m.rawest
– Insert a control char into rockyou2021
– Found 8m (@105k tabs, @7.9m cr)

More JTR – control char rules
From solar designer:
Overstrike any one character
[List.Rules:rep_control_1]
Trivial
o[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[1-9A-ZZ] >\p[0-9A-Z] o\0[\x7f\x80\x01-\x1f] Q

Insert any one character
[List.Rules:ins_control_1]
Trivial
i[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[2-9A-ZZZ] >\p1[0-9A-Z] i\0[\x7f\x80\x01-\x1f]

Hashcat

• Brute force attack

– lower, upper, number, special len 7 3.7 days

– lower, upper, number len 8 @10 days

• 6m passwords

– lower, number len 9 5.3 days

• 1.9m passwords

– upper, number len 9 5.3 days

• 1.1m passwords found

– Lower, number len 10 – 180 days

• 2.46m passwords found

