


About Me

MS in Cybersecurity, CISSP, C|CISO

Software for first e-commerce system (from 1985-1995)
Software for the first orbiting radio telescope satellite
Software for the most advanced pulse oximeter

Cybersecurity for government satellite ground control,
balancing sound cybersecurity with cost and schedule.
Currently employed at The Aerospace Corp.

Interest in the intersection of cybersecurity and software
development began with white hat password cracking
over 30 years ago.



Cracking 936,504,299 Passwords

Dump from Have | Been Pwned

Good news — they are NTLM format

Bad news — 936,000,000

This requires a Big Data approach and lots of RAM

Started with 128gb and went to 256gb

— Generally needs server grade hardware for lots of
RAM

Limited RAM means | could only run a few threads
at the beginning



Tools

* John The Ripper
— Infrequent official releases, Many unofficial releases
— Poor Graphical Processor Unit (GPU) windows support
— Easy to make custom rules
— Good mailing list support

* HashCat
— 6.2.6 latest release Sep 2022 ®
— Great GPU acceleration
— Primitive rule syntax
— Dictionary attacks takes a lot of memory



Wordlists

 Some very high quality

* Most stuffed full of junk and require editing
— Very long lines, often thousands of characters long
— Non ASCII letters
— Separators that are not newlines
— Since they are big, specialized tools are needed

* Rockyou2021 is a bit big, but very high quality



My Custom Password Tools

pw_stats wordlist

— Statistics on cracked passwords
remove_prefix hashes

— Converts between JTR and Hashcat hashes, extracts passwords from found hashes
pw_unhex

— Decodes ‘hex’ notation in found passwords
count foo

— Character frequency count
short -1 41 foo > foo.41

— splits foo into 2 files, 40 chars and shorter, and 41 chars and longer
ascii-lines -p foo > foo.p

— only outputs lines of foo compromised solely of printable ascii characters
multi-merge foo.1 foo.2 foo.3 > foo.123

— merges any number of sorted files into a big sorted file
sample -10000 foo > foo.10k

— outputs one line every 10000 lines, for sampling foo
line_len foo

— Prints line length counts



Standard Wordlist Tools

gnu sort

— You generally want to process sorted wordlists

— Works with files bigger than RAM using tmp files
unig

— Remove duplicate words

comm

— Removes duplicate words in different files
emacs

— The one true editor, regular expressions, can process
gigabyte files



Hashing Speed

NTLM Speed 41,825.0 MH/s ©
md5 Speed  24,943.1 MH/s
LM Speed 18,382.7 MH/s
descrypt Speed 906.7 MH/s

SHA1 Speed  788.2 MH/s

scrypt Speed 435.1 kH/s
WPA2 Speed 396.8 kH/s

berypt Speed 13094 H/s
https://gist.github.com/epixoip/a83d38f412b473
7€99bbef804a270c40



https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

Salt

1979 - Unix 12 bits, 4,096 different salts

— https://spqgr.eecs.umich.edu/courses/cs660spl11/p
apers/10.1.1.128.1635.pdf

1980’s - Unix 48 bits, 281,474,976,710,656
1996 - berypt 128 bits, 3.4 x 10738 salts
Argon2 128 bits, 3.4 x 10738 salts
Descrypt uses 12 bits of salt

LM and NTLN doesn’t use salt ©



https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf

How to Crack

* Dictionaries - very efficient

* Brute force attack - very powerful, but slow and
doesn't scale

— 8 chars upper lower number - 18.340,105,584,896
@229 days on 3060ti

— 12 char upper lower number -
3,226,266,762,397,899,821,056 @12,791,288 years

— 16 char upper lower number -
47,672,401,706,823,533,450,263,330,816

 Rule based attack



Rainbow Tables

Doesn’t play nice with salt
Very very fast ©

Works with LM, NTLM, MD5, etc.

Defcon data duplication village — 6tb drives

— freerainbowtables.com GSM A51 and MD5 hash
tables

— more rainbowtables, lanman, mysqlshal, ntim,
and some word lists

Best used with a small number of hashes



Starting to Crack - Using Rainbow Crack

| tried Rainbow Crack 1.8

 Used NTLM loweralpha-space rainbow table
— 43 gigabytes
* Unable to get it working

— Complex process to convert downloaded tables to
rainbow table

— Unable to crack a known hash

— Uses 160kbytes per hash ®

— Therefore on 936m passwords, 150,000 gigabytes
RAM required ®

— Contacted project rainbow crack Sep 26 — no response



Starting to Crack - Using Rainbow Crack

* | tried rcracki_mt (0.7.0) (works with rti2 files)
— It actually works, unlike rainbow crack

 Used NTLM loweralpha-space rainbow table
— 35 gigabytes

Takes 6 seconds per file (SATA SSD), 84 files (504

sec per hash)

— 900m passwords will take 16,000 years ®
— Good for cracking a few passwords, bad for millions



Starting to crack - Using Hashcat

* My hashcat machines has 16gb of ram.
* When | ran hashcat on 1m passwords:

hashcat.exe -m 1000
.\pwned pw_pruned ntlm.rawest.1m
.\dictionaries\rock.dic (3.9mbyte dictionary)

Host memory required for this attack: 667 MB

Therefore on 936m passwords, 624 gigabytes
RAM required ®



Starting to crack - Using JTR rules

Started using JTR / default dictionary & rules

Using —fork option consumes a lot of ram —
typically 30gb per fork

Upgraded from 128gb to 256gb

Running 6 forks currently

Found 487,193,352 passwords in 12 days
Lots more work to do



More JTR

JTR default dictionary and rules
— Found 154m passwords

JTR incremental attack (which never finishes)
— Total found 325m passwords
JTR using rockyou2021 wordlist

— Found 156m passwords (already found with
incremental ® )

Got total 256gb ram

JTR —fork=6 default wordlist & rules
— Found 15m more passwords



More JTR
* JTR --fork=7 apply rules twice

— Found 36m more passwords

* JTR —fork=8 apply rules to rockyou2021

— Found 265m passwords in less than an hour ©

* JTR --fork=18 rules on rockyou2021

— Now we can use more threads, as only 140m
unfound passwords

— found @11m passwords in 3 days



More JTR

* JTR brute force lower/number up to len=9
— Brute force all lower/number up to 9 len
— found @3.6m passwords in @4 days

* JTR rules using 811m found passwords as
dictionary

— Found 16m passwords in @7 days
— Will take years to finish ®

e JTR apply rules twice on 811m found
passwords

— Will take years to finish ®



More JTR — control characters

e john.exe --fork=10 --format=NT --verbosity=2 --
no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=rep_control_1 \pw-
crack\pwn_ntlm.129m.rawest

— Replace a control char into rockyou2021

* john.exe --fork=22 --format=NT --verbosity=2 --
no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=ins_control 1 \pw-
crack\pwn_ntlm.115m.rawest

— Insert a control char into rockyou2021
— Found 8m (@ 105k tabs, @7.9m cr)



More JTR — control char rules

From solar designer:

# Overstrike any one character

[List.Rules:rep control 1]

# Trivial

# o[0-9A-Z][\x7f\x80\x01-\x1f]

# Optimized

->\r[1-9A-7ZZ] >\p[0-9A-Z] o\O[\x7f\x80\x01-\x1f] Q

# Insert any one character
[List.Rules:ins_control 1]

# Trivial

# i[0-9A-Z][\x7f\x80\x01-\x1f]

# Optimized

->\r[2-9A-777] >\p1[0-9A-Z] i\O[\x7f\x80\x01-\x1f]



Hashcat

* Brute force attack
— lower, upper, number, special len7 3.7 days
— lower, upper, number len 8 @10 days
* 6m passwords

— lower, number len 9 5.3 days
* 1.9m passwords

— upper, number len 9 5.3 days

* 1.1m passwords found



Password Statistics on 847m

Length:
1: 0.0 % (7865)
4: 0.6 % (5477324)

10:
13:
16:
19:
22:
25:
28:

8.4 % (71080497)
2.6 % (21705327)
0.6 % (5076595)
0.2 % (2085553)
0.0 % (317805)
0.0 % (174891)
0.0 % (1)

2: 0.0 % (184702)
5: 5.4 % (45565548)
7:27.1 % (230012879) 8:15.3 % (129345167) 9: 16.0 % (135980933)

11:
14
17:
20:
23:
26:
29:

5.9 % (49652822)
2.7 % (23010045)
0.5 % (4152370)
0.1 % (681817)
0.0 % (317164)
0.0 % (110873)
0.0 % (9)

3: 0.1 % (1076467)
6: 8.6 % (73032569)

12:
15:
18:
21:
24:
27:

3.7 % (31724190)
1.6 % (13340632)
0.3 % (2693245)
0.1 % (565801)
0.0 % (167440)
0.0 % (33)

30+: 0.0 % (101)



Password Statistics on 847m

all lower: 23.4 % (198505023)

all upper: 1.0% (8213462)

all digit: 9.5 % (80317610)

all special: 0.0 % (54389)

all lower digit: 41.8 % (354428645)

all lower upper: 3.2 % (27422772)

all lower upper digit: 10.5 % (88945829)
all lower special: 2.5 % (21237523)

all upper digit: 2.6 % (22236672)

all digit special: 0.4 % (3108352)

all lower upper special: 0.5 % (3894003)
all lower digit special: 3.1 % (26039072)
all lower upper digit special: 1.2 % (10379909)
Has control char: 0.0 % (58968)

Has 8 bit asciil: 0.0 % (45637)



Password Statistics on 847m

String Classes:

All alpha: 27.6 % (234141257)

Alphas + Numbers: 33.6 % (284913353)
Numbers + Alphas: 6.5 % (55027484)

Alphas + Specials: 0.5 % (4152050)

Alphas + Numbers + Alphas: 6.0 % (50456266)
Numbers + Alphas + Numbers: 2.1 % (18036336)
Alphas + Specials + Alphas: 1.9 % (16296502)



Control chars in passwords

nul [0]=5 soh [1]=111 stx [2]=117 etx [3]=444
eot [4]=835 enq[5]=70 ack[6]=100 bel[7]=119
bs [8]=226 ht[9]=129,396 If[10]=8 vt [11]=180
ff [12]=241 cr [13]=19,527,161 so [14]=815

si [15]=404 dle [16]=100 dc1[17]=119 dc2[18]=124
dc3 [19]=90 dc4[20]=94 ak[21]=95 syn [22]= 96

etb [23]=93 can [24]=120 em [25]=116 sub [26]=97
esc [27]=99 fs [28]=81 gs [29]=102 rs [30]=87
us [31]=162 del [127]=619




Defense

e Don’tuse NTLM

e 2 factor authentication
— What you have - Titan security key, yubikey, smartcard
— What you are - Fingerprint, Face ID

e Use cryptographically strong random passwords

* Use a password manager
— keepass, 1password, bitwarden

* | wrote a password generator, here is some output:
password is K)dE;pN%(]JR~H6L-11!R bits 129
password is GAw->8k?+Qou#(*#L:Z0 bits 129
password is YmytLWazQ[g{OR@}I2ha bits 129
password is _a*W9h8[J~jsO)*6ahaQ bits 129
password is [q;)y_):BTJAfHZU)7.* bits 129



Other Stuff

* You will want to undervolt / underclock your
GPU to save power

— MSI Afterburner works well, windows specific

* https://www.openwall.com/presentations/Off
ensiveCon2024-Password-Cracking/

* https://jakewnuk.com/static/BsidesCaymanlsl
ands2023%20-
%20Leveling%20Up%20Password%20Attacks%
20with%20Breach%20Data.pdf



https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf

Dictionaries

47,085,595 linked.dic 11,432,450,014 bOn3z.dic
72,382,568 SkullSecurityComp.dic 13,675,962,135 hashesorg2019.dic
93,559,564 10-million-passwords.dic 13,832,356,359 crackstation_fixed.dic
94,461,698 ignis-10M.dic 17,264,739,583 Md5decrypt-awesome-wordlist.dic
139,749,969 10-million-user-pass.dic 17,539,451,065 collection_1 5 vl.dic
139,921,988 rockyou.dic 17,868,066,068 DCHTPassv1.0.dic
362,881,958 hk_hlm_founds.dic 18,166,067,612 naxxatoe-dict-total-new-unsorted.dic
382,000,913 collection_1 5 v3.dic 18,624,885,828 HYPER-WORDLIST-DIC.dic
1,075,899,306 superpass_fixed.dic 21,102,866,314 bOn3z-sorted-wordlist.dic
1,305,699,616 facebook-lastnames.dic.I133t
1,643,295,189 kac.dic 37,241,758,679 weakpass_2a.dic
2,266,396,047 Super_mega_dic.dic 41,514,529,952 collection_1 5 v2.dic
2,277,681,952 exploit.in.dic 98,378,212,907 rockyou2021.dic
3,107,889,706 thedefinitvepasswordlist_complete_.dic
4,276,546,161 HashesOrg.dic 123,968,583,755 WordlistBySheez_v8.dic

5,403,987,782 hibp_515 found.dic



