
Cracking 936 million Passwords

Jeff Deifik

jeff@deifik.com

About Me

• MS in Cybersecurity, CISSP, C|CISO

• Software for first e-commerce system (from 1985-1995)

• Software for the first orbiting radio telescope satellite

• Software for the most advanced pulse oximeter

• Cybersecurity for government satellite ground control,
balancing sound cybersecurity with cost and schedule.
Currently employed at The Aerospace Corp.

• Interest in the intersection of cybersecurity and software
development began with white hat password cracking
over 30 years ago.

Cracking 936,504,299 Passwords

• Dump from Have I Been Pwned

• Good news – they are NTLM format

• Bad news – 936,000,000

• This requires a Big Data approach and lots of RAM

• Started with 128gb and went to 256gb
– Generally needs server grade hardware for lots of

RAM

• Limited RAM means I could only run a few threads
at the beginning

Tools
• John The Ripper

– Infrequent official releases, Many unofficial releases

– Poor Graphical Processor Unit (GPU) windows support

– Easy to make custom rules

– Good mailing list support

• HashCat

– 6.2.6 latest release Sep 2022 

– Great GPU acceleration

– Primitive rule syntax

– Dictionary attacks takes a lot of memory

Wordlists

• Some very high quality

• Most stuffed full of junk and require editing

– Very long lines, often thousands of characters long

– Non ASCII letters

– Separators that are not newlines

– Since they are big, specialized tools are needed

• Rockyou2021 is a bit big, but very high quality

My Custom Password Tools
• pw_stats wordlist

– Statistics on cracked passwords

• remove_prefix hashes
– Converts between JTR and Hashcat hashes, extracts passwords from found hashes

• pw_unhex
– Decodes ‘hex’ notation in found passwords

• count foo
– Character frequency count

• short -l 41 foo > foo.41
– splits foo into 2 files, 40 chars and shorter, and 41 chars and longer

• ascii-lines -p foo > foo.p
– only outputs lines of foo compromised solely of printable ascii characters

• multi-merge foo.1 foo.2 foo.3 > foo.123
– merges any number of sorted files into a big sorted file

• sample -10000 foo > foo.10k
– outputs one line every 10000 lines, for sampling foo

• line_len foo
– Prints line length counts

Standard Wordlist Tools
• gnu sort

– You generally want to process sorted wordlists

– Works with files bigger than RAM using tmp files

• uniq
– Remove duplicate words

• comm
– Removes duplicate words in different files

• emacs
– The one true editor, regular expressions, can process

gigabyte files

Hashing Speed

• NTLM Speed 41,825.0 MH/s 
• md5 Speed 24,943.1 MH/s
• LM Speed 18,382.7 MH/s
• descrypt Speed 906.7 MH/s
• SHA1 Speed 788.2 MH/s
• scrypt Speed 435.1 kH/s
• WPA2 Speed 396.8 kH/s
• bcrypt Speed 13094 H/s

https://gist.github.com/epixoip/a83d38f412b473
7e99bbef804a270c40

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40
https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

Salt

• 1979 - Unix 12 bits, 4,096 different salts

– https://spqr.eecs.umich.edu/courses/cs660sp11/p
apers/10.1.1.128.1635.pdf

• 1980’s - Unix 48 bits, 281,474,976,710,656

• 1996 - bcrypt 128 bits, 3.4 x 10^38 salts

• Argon2 128 bits, 3.4 x 10^38 salts

• Descrypt uses 12 bits of salt

• LM and NTLN doesn’t use salt 

https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf
https://spqr.eecs.umich.edu/courses/cs660sp11/papers/10.1.1.128.1635.pdf

How to Crack

• Dictionaries - very efficient

• Brute force attack - very powerful, but slow and
doesn't scale
– 8 chars upper lower number - 18.340,105,584,896

@229 days on 3060ti

– 12 char upper lower number -
3,226,266,762,397,899,821,056 @12,791,288 years

– 16 char upper lower number -
47,672,401,706,823,533,450,263,330,816

• Rule based attack

Rainbow Tables

• Doesn’t play nice with salt

• Very very fast 

• Works with LM, NTLM, MD5, etc.

• Defcon data duplication village – 6tb drives
– freerainbowtables.com GSM A51 and MD5 hash

tables

– more rainbowtables, lanman, mysqlsha1, ntlm,
and some word lists

• Best used with a small number of hashes

Starting to Crack - Using Rainbow Crack

• I tried Rainbow Crack 1.8
• Used NTLM loweralpha-space rainbow table

– 43 gigabytes

• Unable to get it working
– Complex process to convert downloaded tables to

rainbow table
– Unable to crack a known hash
– Uses 160kbytes per hash 
– Therefore on 936m passwords, 150,000 gigabytes

RAM required 
– Contacted project rainbow crack Sep 26 – no response

Starting to Crack - Using Rainbow Crack

• I tried rcracki_mt (0.7.0) (works with rti2 files)

– It actually works, unlike rainbow crack

• Used NTLM loweralpha-space rainbow table

– 35 gigabytes

Takes 6 seconds per file (SATA SSD), 84 files (504
sec per hash)

– 900m passwords will take 16,000 years 

– Good for cracking a few passwords, bad for millions

Starting to crack - Using Hashcat

• My hashcat machines has 16gb of ram.

• When I ran hashcat on 1m passwords:

hashcat.exe -m 1000
..\pwned_pw_pruned_ntlm.rawest.1m
..\dictionaries\rock.dic (3.9mbyte dictionary)

Host memory required for this attack: 667 MB

Therefore on 936m passwords, 624 gigabytes
RAM required 

Starting to crack - Using JTR rules

• Started using JTR / default dictionary & rules

• Using –fork option consumes a lot of ram –
typically 30gb per fork

• Upgraded from 128gb to 256gb

• Running 6 forks currently

• Found 487,193,352 passwords in 12 days

• Lots more work to do

More JTR

• JTR default dictionary and rules
– Found 154m passwords

• JTR incremental attack (which never finishes)
– Total found 325m passwords

• JTR using rockyou2021 wordlist

– Found 156m passwords (already found with
incremental )

• Got total 256gb ram

• JTR –fork=6 default wordlist & rules
– Found 15m more passwords

More JTR

• JTR --fork=7 apply rules twice

– Found 36m more passwords

• JTR –fork=8 apply rules to rockyou2021

– Found 265m passwords in less than an hour 

• JTR --fork=18 rules on rockyou2021

– Now we can use more threads, as only 140m
unfound passwords

– found @11m passwords in 3 days

More JTR
• JTR brute force lower/number up to len=9

– Brute force all lower/number up to 9 len

– found @3.6m passwords in @4 days

• JTR rules using 811m found passwords as
dictionary
– Found 16m passwords in @7 days

– Will take years to finish 

• JTR apply rules twice on 811m found
passwords
– Will take years to finish 

More JTR – control characters
• john.exe --fork=10 --format=NT --verbosity=2 --

no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=rep_control_1 \pw-
crack\pwn_ntlm.129m.rawest
– Replace a control char into rockyou2021

• john.exe --fork=22 --format=NT --verbosity=2 --
no-log --wordlist=\pw-
crack\dictionaries\rockyou2021.dic --
rules=ins_control_1 \pw-
crack\pwn_ntlm.115m.rawest
– Insert a control char into rockyou2021
– Found 8m (@105k tabs, @7.9m cr)

More JTR – control char rules
From solar designer:
Overstrike any one character
[List.Rules:rep_control_1]
Trivial
o[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[1-9A-ZZ] >\p[0-9A-Z] o\0[\x7f\x80\x01-\x1f] Q

Insert any one character
[List.Rules:ins_control_1]
Trivial
i[0-9A-Z][\x7f\x80\x01-\x1f]
Optimized
->\r[2-9A-ZZZ] >\p1[0-9A-Z] i\0[\x7f\x80\x01-\x1f]

Hashcat

• Brute force attack

– lower, upper, number, special len 7 3.7 days

– lower, upper, number len 8 @10 days

• 6m passwords

– lower, number len 9 5.3 days

• 1.9m passwords

– upper, number len 9 5.3 days

• 1.1m passwords found

Password Statistics on 847m
Length:
1: 0.0 % (7865) 2: 0.0 % (184702) 3: 0.1 % (1076467)
 4: 0.6 % (5477324) 5: 5.4 % (45565548) 6: 8.6 % (73032569)
 7: 27.1 % (230012879) 8: 15.3 % (129345167) 9: 16.0 % (135980933)
10: 8.4 % (71080497) 11: 5.9 % (49652822) 12: 3.7 % (31724190)
13: 2.6 % (21705327) 14: 2.7 % (23010045) 15: 1.6 % (13340632)
16: 0.6 % (5076595) 17: 0.5 % (4152370) 18: 0.3 % (2693245)
19: 0.2 % (2085553) 20: 0.1 % (681817) 21: 0.1 % (565801)
22: 0.0 % (317805) 23: 0.0 % (317164) 24: 0.0 % (167440)
25: 0.0 % (174891) 26: 0.0 % (110873) 27: 0.0 % (33)
28: 0.0 % (1) 29: 0.0 % (9) 30+: 0.0 % (101)

Password Statistics on 847m
all lower: 23.4 % (198505023)
all upper: 1.0 % (8213462)
all digit: 9.5 % (80317610)
all special: 0.0 % (54389)
all lower digit: 41.8 % (354428645)
all lower upper: 3.2 % (27422772)
all lower upper digit: 10.5 % (88945829)
all lower special: 2.5 % (21237523)
all upper digit: 2.6 % (22236672)
all digit special: 0.4 % (3108352)
all lower upper special: 0.5 % (3894003)
all lower digit special: 3.1 % (26039072)
all lower upper digit special: 1.2 % (10379909)
Has control char: 0.0 % (58968)
Has 8 bit asciil: 0.0 % (45637)

Password Statistics on 847m
String Classes:

All alpha: 27.6 % (234141257)

Alphas + Numbers: 33.6 % (284913353)

Numbers + Alphas: 6.5 % (55027484)

Alphas + Specials: 0.5 % (4152050)

Alphas + Numbers + Alphas: 6.0 % (50456266)

Numbers + Alphas + Numbers: 2.1 % (18036336)

Alphas + Specials + Alphas: 1.9 % (16296502)

Control chars in passwords

nul [0]=5 soh [1]=111 stx [2]=117 etx [3]=444

eot [4]=835 enq [5]=70 ack [6]=100 bel [7]=119

bs [8]=226 ht [9]=129,396 lf [10]=8 vt [11]=180

ff [12]=241 cr [13]=19,527,161 so [14]=815

si [15]=404 dle [16]=100 dc1 [17]=119 dc2 [18]=124
dc3 [19]=90 dc4[20]= 94 ak [21]=95 syn [22]= 96

etb [23]=93 can [24]=120 em [25]=116 sub [26]= 97

esc [27]=99 fs [28]=81 gs [29]=102 rs [30]=87

us [31]=162 del [127]=619

Defense

• Don’t use NTLM
• 2 factor authentication

– What you have - Titan security key, yubikey, smartcard
– What you are - Fingerprint, Face ID

• Use cryptographically strong random passwords
• Use a password manager

– keepass, 1password, bitwarden

• I wrote a password generator, here is some output:
password is K)dE;pN%(]R~H6L-11!R bits 129
password is GAw->8k?+Qou#(*#L:Z0 bits 129
password is YmytLWazQ[g{0R@}I2ha bits 129
password is _a^W9h8[J~jsO)*6ahaQ bits 129
password is [q;)y_):BTJAfHZU)7.* bits 129

Other Stuff

• You will want to undervolt / underclock your
GPU to save power
– MSI Afterburner works well, windows specific

• https://www.openwall.com/presentations/Off
ensiveCon2024-Password-Cracking/

• https://jakewnuk.com/static/BsidesCaymanIsl
ands2023%20-
%20Leveling%20Up%20Password%20Attacks%
20with%20Breach%20Data.pdf

https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://www.openwall.com/presentations/OffensiveCon2024-Password-Cracking/
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf
https://jakewnuk.com/static/BsidesCaymanIslands2023 - Leveling Up Password Attacks with Breach Data.pdf

Dictionaries
 47,085,595 linked.dic 11,432,450,014 b0n3z.dic

72,382,568 SkullSecurityComp.dic 13,675,962,135 hashesorg2019.dic

93,559,564 10-million-passwords.dic 13,832,356,359 crackstation_fixed.dic

94,461,698 ignis-10M.dic 17,264,739,583 Md5decrypt-awesome-wordlist.dic

139,749,969 10-million-user-pass.dic 17,539,451,065 collection_1_5_v1.dic

139,921,988 rockyou.dic 17,868,066,068 DCHTPassv1.0.dic

362,881,958 hk_hlm_founds.dic 18,166,067,612 naxxatoe-dict-total-new-unsorted.dic

382,000,913 collection_1_5_v3.dic 18,624,885,828 HYPER-WORDLIST-DIC.dic

1,075,899,306 superpass_fixed.dic 21,102,866,314 b0n3z-sorted-wordlist.dic

1,305,699,616 facebook-lastnames.dic.l33t

1,643,295,189 kac.dic 37,241,758,679 weakpass_2a.dic

2,266,396,047 Super_mega_dic.dic 41,514,529,952 collection_1_5_v2.dic

2,277,681,952 exploit.in.dic 98,378,212,907 rockyou2021.dic

3,107,889,706 thedefinitvepasswordlist_complete_.dic

4,276,546,161 HashesOrg.dic 123,968,583,755 WordlistBySheez_v8.dic

5,403,987,782 hibp_515_found.dic

